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Relativistic Quantum Physics Equation for 
Number of Electrons 

A. S. Rabinowitch ~ 
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A generalization of the Dirac equation for number of electrons is proposed 
which in the nonrelativistic case takes the form of the corresponding Scbr6dinger 
equation. The equivalence of various matrix representations and the relativistic 
covariance of the proposed equation are proved. 

Let us assume N electrons are situated closely together in space. To 
describe them we introduce a wave function ~ with 4 u components 7tk. We 
shall seek a generalization of the Dirac equation in the following form: 

[Fk( i~  O-~--e- A k ) - - x / N m c ]  k c (1) 

where e, m are the charge and mass of  the electron, Ak are the electro- 
magnetic potentials of both the external fields and the interaction of the 
electrons, F k are square matrixes of  order 4 ~, 0 < k < 4 N - 1 ,  and x k 
[ 4 ( / - 1 )  < k < 4 l - 1 ]  are the coordinates of the I th particle. 

We impose the following correlations on the matrixes Fk: 

r " C  " + V"C ~ = 2 g " E  (2) 

where g,m = 0, n :Am; g "  = 1, n = 4/; g "  = - 1, n :~ 4/; and E is the unit matrix. 
Then, after multiplying (1) by {Fk[ih •k-(e/c)Ak] + , fN  mc} we derive 

the generalization of the Kle in-Gordon equation: 

k. iliOk-- Ak i i i O . - - A . - - - F k F ' F k ~ - N m 2 c  2 N=O 
c c 

(3) 
Fk. = 3kA. -- OnAk 
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Let us consider the nonrelativistic stationary case: 

Ilt(Xk)ll-exp{--~c[(mc2+Si)X~ 

�9 . + (mc 2 + ~ N ) x 4 ( N  - I)]} ~0(X s) (4) +. 

sr  Igkl<<mc 2 

and assume that Ak = ~b~ with k = 4 l  and Ak=0 with kr  
Then for this nonrelativistic case from (3) and (4) we obtain the Schr6d- 

inger equation for N electrons: 

# - e r  ~ ~'=0 
2m 
N N (5) 

s:~41, e =  ~ ek, r  Z Ck 
k=l k=l 

The problem of solving correlations (2) is related to the spinor analysis 
which was investigated by Rashevsky (1955). But this method of introducing 
spinors based on the Clifford algebra is very complicated and besides it is 
not connected with any definite quantum physics equation for the N elec- 
trons. That is why we have chosen a simpler method which will permit us 
to generalize the well-known results of the spinor theory based on the Dirac 
equation (Bjorken and Drell, 1964). 

Let us introduce the matrixes G': 

Gn=F ", n=41, Gn=iF n, 

(Gn) 2 = E, G"G k = -GkG ", 

n#41 
(6) 

n r  

We shall show that there are 2M matrixes G" of order 2 M fulfilling (6) 
and that any realization of (6) is related to these matrixes by means of a 
similarity transformation�9 

Let us introduce the aggregate GM of the following 2M matrixes of 
order 2 M by means of the recurrence method: 

 k=  Ok-I --Ek-,:'  ek-, Ok-,/ Ok-,// 
(7) 
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Ek- ~ and Ok- 1 are the unit and zero matrixes of  order 2 k- 1. The last matrix 
in (7) means the aggregate of all of  the matrixes 

Ok-l iFk-I I 
- iFk- 1 Ok- 1: 

where Fk- 1 e G k -  1. 

We shall prove the following theorem. 

Theorem 1. The aggregate of  the matrixes (~M of (7) fulfills (6) and any 
aggregate / t g  of  2M matrixes fulfilling (6) can be defined by the similarity 
correlation FIM~GM, that is, ISIM=T-~GMT, where T is a nonsingular 
matrix. 

Proo f  Let us assume that G n are the matrixes of the aggregate /tM. 
Then, from conditions (6), 

(G~ G~176 1 (G~ ~ 

and it follows that the Jordan form of G O is the matrix 

Lo=(EM-, Ou-, ) 
\Og-1 -Eu_t 

Therefore we can find a similarity transformation of G n in which G o is 
transformed into L ~ After applying this transformation which preserves the 
correlation (6) because it is a similarity transformation, we can consider 
G o= L ~ retaining the former notations for the transformed matrixes G n. 
Then from (6) we derive 

GI (OM-I SM-I t 
\S74-i 0:~-11 

where SM- j is a nonsingular matrix of order 2 ~ -  1. 
Let us now apply to G n the similarity transformation with the trans- 

formation matrix 

{SM-~ Ou-l] 
TM=~OM-1 EM-I] 

Then G o and G ~ will acquire the form 

\OM-- 1 --EM- I ' \EM- 1 OM-- 1/ 
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From (6) it follows that the rest of the matrixes G" will have the form 

G~=( OM-, iG~-,  I n > 2  
\ - iG~-~  OM- 1/' - 

where the matrixes G~4-~ of order 2 M -~ have to satisfy (6). 
Therefore, the initial aggregate/QM is similar to the following aggregate 

of 2M matrixes: 

( EIW-. OM--I I, ( OM-I EM-11 ( OY 1 i~IM-ll (8) 
OM-I --EM-1/ \EM-I OM-I/' \ - - iHg-i  O g - l /  

where, in order to satisfy (6), 2 ( M -  1) matrixes /1g-  ~ of order 2 g - ~ also 
have to fulfill correlation (6). 

If  we apply to aggregate (8) the similarity transformation having the 
transformation matrix 

TM=( TM-10M-J I 
\OM- 1 TM- 1] 

then this aggregate will be transformed to the aggregate of the same form 
(8) in which only /TM-I is replaced by T~I-~FIM ~TM I. Therefore, the 
proof of the theorem for 2M mat r ixes / tg  of  order 2 M has been reduced to 
the same proof for 2 ( M -  1) matr ixes /Tg-  ~ of order 2 M - 

Continuing this process and decreasing the order of the matrixes to 2, 
we finally obtain the result/1M~ (~g and (~M satisfies (6). Hence the theorem 
has been proved. 

Let us note that to the aggregate of G n, O<n<_2M- 1, we can add one 
more matrix G 2M = G~ G ~ . . .  G TM - ~ corresponding to (6). 

It is easy to prove that the Hermifian conjugation G ~  of the aggregate 
(~M of (7) has the following property: 

G~t = (~M (9) 

For such aggregates of matrixes we shall prove a special theorem. This 
theorem, like the previous one, is a generalization of the well-known results 
for the Dirac matrixes (Bjorken and Dretl, I964). 

Theorem 2. Every aggregate HM of 2M matrixes of order 2 M fulfilling 
H ~ - H M ,  is related with (~M by the correlation correlation (6) and (9), -+  - - 

TMGMTM, T~= T~' (10) 

Proof First let us prove the following lemma. 

Lemma. Any matrix SM commutative with all of the matrixes of the 
aggregate (~M is proportional to the unit matrix: SM = gEM. 
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In order to prove the lemma, let us present SM in the form 

s 

Then from its commutativity with the matrixes GM of (7) we have 
12 _ _ ~ 2 1  
M - 1 - - J ~  (11) 

S ~ -  = S ~ - I ,  I1 -- -- 11 SM-IGM-1 =GM-1SM-I  1 

SM-I and then for Repeating the same process for the matrix 11 
S ~ - 2 ,  S~t-3 . . . .  , $111, we obtain the result that the matrix S M is diagonal 
with the same numbers on its main diagonal, which was to be proved. 

Let us return to the proof  of the theorem. It follows from Theorem 1 
that/1M = CT~GMCM. 

A s / t ~ t  = / T v  and G~t=GM we have 
- - +  + --  + --1 H M = C MGM( CM) = C~GMCM =rIM (12) 

From here we find 

SMGM "~- GMSM, SM = CMC~I (13) 

Therefore, from the proved lemma we obtain 

CMC~t = ~.EM (14) 

Since there are only nonnegative real numbers on the main diagonal 
of the matrix CMC +, the number 2 is real and positive. Supposing 
TM = CM/,,/~, we obtain (10). The theorem has been proved. 

Let us turn now to the conservation law of the current which may be 
deduced from equation (1). In order to obtain it, we have to find a matrix 
R which satisfies 

(RF") + = RF" (15) 

Then analogously to the Dirac theory we obtain the following for the 
current density jn:  

J'=e~tF'tff, 0 . Jn=0 ,  ~ =  ~+R (16) 

In addition we must require that the current density J" have a vector 
character: 

j , =  Ox" j z  (17) 
OX k' 

Let us consider the problem of  finding the matrix R and the transforma- 
tion law of  the wave function ~t for the transition from coordinates x # to 
the new coordinates x z. 



796 Rabinowitch 

On the matrixes G k related to F k by (6) we impose condition (9). This 
condition is fulfilled, for example, by the matrixes of the aggregate G2N of 
(7) and it is necessary to make the values J~ real numbers. 

We seek the transformation law for ~ in the form 

~,' (x z ) = F ~  (x k) (18) 

where F is a nonsingular matrix. 
Then from the relativistic covariance of equation (1) we have 

F-1F" OXkF=Fk (19) 
~ X n' 

As usual, let us consider the infinitesimal rotation 

0x ~ 
- 5~+ ehk., hk. = --h.k, e ~ O, F= E +  ef~ (20) 

OX n" 

Here 6~ is the Kronecker symbol, and E is the unit matrix. 
Then we derive from (19) 

[f~, v k] = r % ~  (21) 

The correlation (21) has the following solution: 
n r t  

= # E + F'FIA.t, ;%m = - ~ hm (22) 

in which p is an arbitrary number. It follows from the proved lemma and 
Theorem 1 that formula (22) gives us the general solution of (21). 

From formulas (16)-(18) we have the following correlation: 

F+RF" ~xk F = RF k (23) 
(~X n" 

From (t9) and (23) we find 

F+R = R F - l  (24) 

Let us return to the infinitesimal rotation (20). Then from (20) and 
(24) we obtain 

~+R = - R ~  (25) 

So we have to find the matrix R which satisfies (15) and (25). This gives 
the following correlations: 

p =iv,  Im v=0,  (RF" )+ = RF ", (26) 

(F kFI)+R = - R F k F  I, k ~ l  
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Using (6) and (9), it is not difficult to check the following solution 
of (26): 

N--I 
R = s i  N(N+I) /2+I  ~ F 4k, I m s = 0  (27) 

k=O 

For rotation by an angle 0kl in the plane xkx  I the transformation formula 
for ~t acquires the well-known form 

t . 1 kk k 1 ~r = e x p [ m -  ~g F F 0kl]~, Im a =0  (28) 

in which k, l are fixed numbers. 
It ensues from (19) and (24) that the expressions 

A/,1~...1,, = g,F/,F1~... F~"~t 

are tensors. 
Theorem 2 gives us the result that these tensors and in particular the 

current densities J"  are the same, independent of the choice of the matrixes 
F" satisfying (9). 

From the differential law of the current conservation (16) we have the 
following N continuity equations: 

0(I  k~ + V k~ OI k~ 
t- = 0, a = 1, 2, 3 (29) 

c Ot Ox~k) 

where 

f N N ik.= j4(k-D+. H d3x(t), V k~ ~ F ~ (30) 
l= l,t~k j= l,j~k 

The ~1) are the four coordinates of t h e / t h  particle, o x( t )=et ,  1 <_l<_N. 
The N equations (29) give us only one integral conservation law. 
The quantities I ~ and I ~" can be interpreted as the charge and current 

densities of the kth particle, and V k~ as the charge flow in the kth particle 
from the other particles. 

As a three-dimensional volume is not a relativistic invariant, the expres- 
sions I k" are not vectors. That  is why we introduce other quantities i ~" which 
are vectors and which coincide with I k" in the nonrelativistic case: 

x~(k)) = f j4(~-~)+'(r, x~1)) [~.(r, 

N d3X(l) 
• 1~ a = 1 , 2 , 3  (31) I= I,lCk (1 -- V2/C2) 1/2' 
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where ~ is the proper time and is the same under integration for all the 
particles; v/= v~ (r, x(])) are the components of  the lth particle velocity. This 
velocity can be determined by imposing the following condition: In the 
inertial coordinate system moving with this velocity relative to the inertial 
system x" the correlations fl~(r, ~ - x(o ) - 0 , / 3  = 1, 2, 3, must be fulfilled. 

Now we can set up the equation for the potentials , k  . . . .  Alint [,X(k)J 
(1 < k < N ,  0_<n<3) of the interaction of the kth particle with the other 
particles, which will coincide with the classical equation in the nonrelativistic 
case"  

~k)l Ak~t 632Aik/t __ 4Zr 
Ox{k) O Ox{~) Ox(~). c 

N 
pk.= Z i" 

l = l,l•k 

F-k- 

(32) 

Let us consider what happens when there are two electrons. Then for 
the matrix representation (7), equation (1) has the form 

i~[&OOl -- (O-x 2 -- i&') 03 -- &' IV4 "~- 

ih[&O 02 + (0:,2 + i&') V4 -- ~3  V3 -- 

i/i[--a~O03 + ( & 2 +  ig~?) 0 , + L'l/~2 -- 

i h [ - & o  0 4 -  (&=- iL,)02 + L' V ?, + 

)'"0y" 0 4 1 - v ~ m c O ,  =0  

Y"~y" 031-  x/2 mc02 = 0  

yn~v"021 - ~ mc03 = 0 

~n~yn~ll]- X/2 m c ~ 4 =  0 

(33) 

Here Ok denotes the four-component functions with the components 
V4k-3, Vnk-2, gt4k-l, V4k; O:,~=a/Oxk+(ie/ch)Ak and ~ = 0 / 0 y k +  
(ie/cli)A4 + k; X k, yk are the coordinates of the two electrons; ?" are the Dirac 
matrixes. 

Let us consider the nonrelativistic case and present Ok in the form 

Ok=expl--hmC(xO+yO)](Ok (34) 

Then from (33) using the nonrelativistic approach, we obtain the follow- 
ing approximate correlations: 

(1 -- x/2) (~l = -- )/~ , ( 1 - , j 2 ) ( ? 2  = y~ (35) 

(1 + x/2)(?3 = - X~ (1 +,j2)~4 = ?.0~ (36) 

Let us note that the correlations (36) follow from (35). 
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From (7), (16), (35), and (36) we find the following expression for the 
charge density of the two electrons: 

j o  = fP~-(fPI "~ ~/~ -~- ~( (P2  -- ~~ 

- -  (P~(~~ + (P3) "~ (P~-(~t~ - (P4) 

= , ~  (~01 + ~b~z + 0~(~3 + ~-~4) (37) 

Hence in the nonrelativistic case under consideration the charge density 
j0 is a positive quantity. 

Let us consider a nonrelativistic stationary case having only an external 
magnetic field intensity: Fj2=F56=Hz (the other magnetic field intensities 
are considered small). Then from (3) and (4) we obtain approximately the 
following: 

gl  "}- g2 -- e(Ao + A4) -- 2mm C~ a/] 

+ (04+~ + if + 5  c" 

ihe ] 2mc(FIF2+FSF6)Ht q~=0, a = l , 2 ,  3 (38) 

The matrix �89 1F2+ F SF 6) gives for the summary spin projection St 
for the two electrons the values St = -h ,  h, 0, which coincide with the class- 
ical result. 
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